교재소개
- Home
- 고등
- 교재소개
<목차>
I. 수열의 극한
1. 수열의 극한
유형01. 극한값의 계산-유리식
유형02. 극한값의 계산-무리식
유형03. 등비수열의 극한과 수렴 조건
유형04. 합이 주어질 때 극한값 구하기
유형05. 수열의 극한의 기본 성질의 활용
유형06. 수열의 대소 관계를 이용한 극한값 구하기
유형07. 수열의 극한의 활용-좌표평면
유형08. 수열의 극한의 활용-도형 등
2. 급수
유형09. 급수의 수렴, 발산
유형10. 부분분수 분해를 이용한 급수의 합 구하기
유형11. 등비급수의 계산
유형12. 등비급수의 수렴 조건
유형13. 등비급수의 활용
유형14. 도형에서의 급수의 활용(등비급수가 아닌 경우)
유형15. 도형에서의 급수의 활용(등비급수인 경우)
Ⅱ. 함수의 극한과 연속
1. 함수의 극한
유형01. 함수의 극한
유형02. 함수의 그래프에서의 좌극한, 우극한, 극한
유형03. 극한값의 계산(유리식)
유형04. 극한값의 계산(무리식)
유형05. 함수의 극한에 대한 성질
유형06. 미정계수의 결정
유형07. 극한값을 이용한 함수식의 결정
유형08. 함수의 극한의 활용
2. 함수의 연속
유형09. 함수의 연속, 불연속
유형10. 함수의 연속- 합, 곱, 이동, 대칭 형태
유형11. 함수의 연속- 그래프가 주어질 때
유형12. 함수의 연속-xⁿ을 포함한 형태
유형13. 연속함수의 활용
유형14. 사이값 정리
Ⅲ. 다항함수의 미분법
1. 미분계수와 도함수
유형01. 평균변화율과 미분계수
유형02. 미분계수의 여러 가지 표현
유형03. 다항함수의 미분법
유형04. 함수의 곱의 미분법
유형05. 미분가능성과 연속성
유형06. 미분법을 활용한 문제 해결
2. 도함수의 활용
유형07. 접선의 방정식-곡선 위, 밖의 점이 주어질 때
유형08. 접선의 방정식-기울기가 주어질 때
유형09. 함수의 증가와 감소
유형10. 함수의 극대와 극소
유형11. 미분을 이용한 그래프 활용
유형12. 최대·최소와 미분
유형13. 도함수의 방정식에의 활용
유형14. 도함수의 부등식에의 활용
유형15. 속도와 가속도
유형16. 도형의 변화율- 길이, 넓이, 부피
유형17. 도함수를 활용한 문제해결
Ⅳ. 다항함수의 적분법
1. 부정적분과 정적분
유형01. 부정적분의 계산 및 활용
유형02. 정적분의 정의 및 미적분의 기본 정리
유형03. 정적분의 계산-구간 나누기
유형04. 정적분의 계산-이동, 대칭형태
유형05. 정적분으로 정의된 함수의 미분
유형06. 정적분으로 나타내어진 함수의 극한
유형07. 정적분으로 정의된 함수
유형08. 정적분과 급수의 관계
유형09. 정적분과 급수의 관계의 활용
유형10. 정적분의 활용
2
. 정적분의 활용
유형11. 곡선과 x축(또는 y축)사이의 넓이
유형12. 두 곡선 사이의 넓이
유형13. 정적분의 활용-함수와 역함수
유형14. 정적분의 활용-등적
유형15. 정적분의 활용-특수한 형태
유형16. 속도와 거리